Search results for "Balitsky-Kovchegov equation"

showing 10 items of 11 documents

Forward rapidity isolated photon production in proton-nucleus collisions

2018

We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data and extended to nuclei with an optical Glauber procedure that introduces no additional parameters beyond the basic nuclear geometry. We present predictions for future forward RHIC and LHC measurements. The predictions are also compared to updated results for the nuclear modification factors for pion production, Drell-Yan dileptons and $J/\psi$ mesons in the same forward kinematics, consistently c…

Drell-Yan processPhotongeometryProtonNuclear TheoryNuclear Theorypi: productionhiukkasfysiikka01 natural sciencesColor-glass condensateHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependenceopticalNuclear ExperimentBrookhaven RHIC CollPhysicsphoton: productionenergy: highhigher-order: 0higher-order: 1suppressionBalitsky-Kovchegov equationHigh Energy Physics - PhenomenologyCERN LHC CollkinematicsNuclear and High Energy PhysicsMeson[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencesGlaubermeson114 Physical sciencesdileptonNuclear physicsNuclear Theory (nucl-th)Piondeep inelastic scattering0103 physical sciencesRapidityproton-nucleus collisions010306 general physicsta114010308 nuclear & particles physicsnucleusphoton productionDeep inelastic scatteringboundary condition* Automatic Keywords *rapidity[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatecross section: dipolep nucleusGlauber
researchProduct

Solving the NLO BK equation in coordinate space

2015

We present results from a numerical solution of the next-to-leading order (NLO) Balitsky-Kovchegov (BK) equation in coordinate space in the large Nc limit. We show that the solution is not stable for initial conditions that are close to those used in phenomenological applications of the leading order equation. We identify the problematic terms in the NLO kernel as being related to large logarithms of a small parent dipole size, and also show that rewriting the equation in terms of the "conformal dipole" does not remove the problem. Our results qualitatively agree with expectations based on the behavior of the linear NLO BFKL equation.

Nuclear Theory (nucl-th)High Energy Physics - Phenomenologycoordinate spaceHigh Energy Physics - Phenomenology (hep-ph)Nuclear TheoryeducationFOS: Physical sciencesnumerical solutionsHigh Energy Physics::ExperimentBalitsky-Kovchegov equation114 Physical sciences
researchProduct

Including resummation in the NLO BK equation

2017

We include a resummation of large transverse momentum logarithms in the next-to-leading order (NLO) Balitsky-Kovchegov equation. The resummed evolution equation is shown to be stable, the evolution speed being significantly reduced by NLO corrections. The contributions from NLO terms that are not enhanced by large logarithms are found to be numerically important close to phenomenologically relevant initial conditions. We numerically determine the value for the constant in the resummed logarithm that includes a maximal part of the full NLO terms in the resummation.

Nuclear and High Energy PhysicsParticle physicsNuclear TheoryLogarithmFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesnext-to-leading order (NLO)ResummationNuclear Experiment010306 general physicsNuclear theoryPhysicsta114010308 nuclear & particles physicsHigh Energy Physics::Phenomenologylarge transverse momentum logarithmsBalitsky-Kovchegov equationHigh Energy Physics - PhenomenologyQuantum electrodynamicsTransverse momentumEvolution equationHigh Energy Physics::ExperimentConstant (mathematics)Nuclear and Particle Physics Proceedings
researchProduct

Factorization of the soft gluon divergence from the dipole picture deep inelastic scattering cross sections at next-to-leading order

2018

We use a factorization scheme analogous to one proposed for single inclusive forward hadron production to factorize the soft gluon divergence present in the deep inelastic scattering cross sections in the dipole picture at next-to-leading order (NLO). We show numerically that in this carefully constructed scheme it is possible to obtain meaningful results for the DIS cross sections at NLO, and so we are able to quantitatively study the recently derived NLO corrections to the DIS cross sections. We find that the NLO corrections can be significant and sensitive to the details of the factorization scheme used for the resummation of the large logarithms into the BK evolution equation. In the ca…

Particle physicsLogarithm[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryHadronFOS: Physical sciences02 engineering and technologymodel: dipolehiukkasfysiikka114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Factorizationfactorizationdeep inelastic scatteringquantum chromodynamics0202 electrical engineering electronic engineering information engineeringsironta0501 psychology and cognitive sciencesResummationhadron: productionDivergence (statistics)Nuclear Experiment050107 human factorsPhysicshadron productionta11405 social sciencesHigh Energy Physics::Phenomenologyhigher-order: 1020207 software engineeringgluonBalitsky-Kovchegov equationDeep inelastic scatteringsoft gluon divergenceGluonregularizationDipoleHigh Energy Physics - PhenomenologyresummationRegularization (physics)evolution equation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentdipole
researchProduct

Isolated photon production in proton-nucleus collisions at forward rapidity

2018

We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data. For comparison, we also update the results for the nuclear modification factor for pion production in the same kinematics. We present predictions for future forward RHIC and LHC measurements at $\sqrt{s_{NN}}=200$ GeV and $\sqrt{s_{NN}}=8$ TeV.

PhotonNuclear TheoryProton7. Clean energy01 natural sciencesColor-glass condensateHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependenceDEPENDENCEPIONNuclear Experiment[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]Brookhaven RHIC CollPhysicsphoton lepton and quark productionLarge Hadron ColliderD+AU COLLISIONSphotonBalitsky-Kovchegov equationP-PB COLLISIONSHigh Energy Physics - PhenomenologyCERN LHC Colllepton and quark productionLHCphoton: forward production[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencespi: hadroproduction114 Physical sciencesNuclear Theory (nucl-th)Nuclear physicsPiondeep inelastic scatteringquantum chromodynamics0103 physical sciencesRapidity010306 general physicsp nucleus: scatteringta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATEDeep inelastic scatteringHADRON-PRODUCTIONboundary conditionDipolerapidityQCD in nuclear reactions[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]TEV[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]cross section: dipole
researchProduct

Balitsky-Kovchegov equation at next-to-leading order accuracy with a resummation of large logarithms

2016

We include resummation of large transverse logarithms into the next-to-leading order Balitsky-Kovchegov equation. The resummed NLO evolution equation is shown to be stable, the evolution speed being significantly reduced by higher order corrections. The contributions from $\alpha_s^2$ terms that are not enhanced by large logarithms are found to be numerically important close to phenomenologically relevant initial conditions.

PhysicsLogarithmNuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesBalitsky-Kovchegov equationStability (probability)Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Evolution equationOrder (group theory)High Energy Physics::ExperimentBoundary value problemResummationMathematical physics
researchProduct

Next-to-leading order Balitsky-Kovchegov equation with resummation

2016

We solve the Balitsky-Kovchegov evolution equation at next-to-leading order accuracy including a resummation of large single and double transverse momentum logarithms to all orders. We numerically determine an optimal value for the constant under the large transverse momentum logarithm that enables including a maximal amount of the full NLO result in the resummation. When this value is used the contribution from the $\alpha_s^2$ terms without large logarithms is found to be small at large saturation scales and at small dipoles. Close to initial conditions relevant for phenomenological applications these fixed order corrections are shown to be numerically important.

PhysicsLogarithmta114Nuclear Theory010308 nuclear & particles physicsFOS: Physical sciencesBalitsky-Kovchegov equation01 natural sciencesgluonsNuclear Theory (nucl-th)DipoleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamics0103 physical sciencesEvolution equationquantum chromodynamicscolor glass condensateOrder (group theory)Boundary value problemResummation010306 general physicsConstant (mathematics)Saturation (chemistry)next-to-leading order corrections
researchProduct

Centrality dependence of forward J/ψ suppression in high energy proton–nucleus collisions

2015

The production of forward $J/\psi$ mesons in proton-nucleus collisions can provide important information on gluon saturation. In a previous work we studied this process in the Color Glass Condensate framework, describing the target using a dipole cross section fitted to HERA inclusive data and extrapolated to the case of a nuclear target using the optical Glauber model. In this work we study the centrality dependence of the nuclear suppression in this model and compare our results with recent LHC data for this observable.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Colliderta114Nuclear TheoryMeson010308 nuclear & particles physicsNuclear TheoryObservablequarkoniaHERABalitsky-Kovchegov equation01 natural sciencesColor-glass condensateGluonNuclear physicsHigh Energy Physics - PhenomenologyDipole0103 physical sciencescolor glass condensateHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsGlauberNuclear Physics A
researchProduct

Forward J / ψ and D meson nuclear suppression at the LHC

2017

Abstract Using the color glass condensate formalism, we study the nuclear modification of forward J/ψ and D meson production in high energy proton-nucleus collisions at the LHC. We show that relying on the optical Glauber model to obtain the dipole cross section of the nucleus from the one of the proton fitted to HERA DIS data leads to a smaller nuclear suppression than in the first study of these processes in this formalism and a better agreement with experimental data.

PhysicsQuantum chromodynamicsNuclear and High Energy PhysicsParticle physicsLarge Hadron Colliderta114010308 nuclear & particles physicsNuclear TheoryquarkoniaHERABalitsky-Kovchegov equationDeep inelastic scattering01 natural sciencesColor-glass condensateNuclear physicsDipole0103 physical sciencesD mesoncolor glass condensateHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsGlauberNuclear and Particle Physics Proceedings
researchProduct

Small-$x$ Physics in the Dipole Picture at NLO Accuracy

2018

International audience; We review recent progress in NLO calculations for dilute-dense processes in the CGC picture. In particular, we focus here on recent steps in understanding high energy renormalization group evolution (BK/JIMWLK), the total DIS cross section at small x and forward particle production in proton-nucleus collisions at next-to-leading order.

Physicssmall-xenergy: highhigher-order: 1hiukkasfysiikkaBalitsky-Kovchegov equationDipoleforward productionQuantum electrodynamicsdeep inelastic scattering[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]color glass condensatesirontarenormalization groupNuclear Experimentp nucleus: scatteringtalkdipole
researchProduct